

The MILENA platform; Technical demonstration of FT biofuels production

Biofuels workshop 18 May 2022 Petten, NL Evert Boymans, Christos Tsekos, Berend Vreugdenhil

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 744821.

- Introduction
 - TNO and the BECOOL project
 - The BtL process: FT through gasification
- Experiment setup and results
- Conclusions and outlook

TNO

OUR MISSION

TNO connects people and knowledge to create innovations that boost the competitive strength of industry and the well-being of society in a sustainable way.

UNIT ENERGY TRANSITION

SOLAR ENERGY WIND ENERGY ENERGY EFFICIENCY BIOBASED AND CIRCULAR TECHNOLOGIES (BCT)

BCT: Gasification

- Gasification: conversion of biomass/residues to a product gas rich in syngas
 - PG can be converted into heat, power, fuels or chemicals

TNO's core technology: MILENA

- ✓ Fluidized/circulating bed
- \checkmark Indirect gasification
- \checkmark High calorific product gas
- ✓ No pure O_2 /ASU required
- \checkmark High feedstock flexibility
- \checkmark Chemicals co-production

Why biomass gasification?

- Biomass: biofuels 70-80% reduction of GHG emissions.
 - Light energy into chemical energy, direct!
 - Also includes CO₂ capture!!
 - Not dependent on renewable electricity
 - Power to X; H₂ and CO₂ availability of ren. electricity (i.e. not yet green)

- Key technology to produce renewable biofuels from its syngas
 - Drop in quality fuels can be produced, e.g. SAF
 - SAF blending mandates announced in EU, 2% in 2025, 5% in 2030 and 63% in 2050
 - In 2020 <0.05% SAF in EU

The BECOOL project

BECOOL

BECOOL is a research and innovation project to promote the cooperation between EU and Brazil in the development of advanced biofuels (especially kerosene), from sustainable agricultural value chains, based on lignocellulosic biomass.

Horizon 2020

Objectives

- Developing and validating integrated technology packages
- Strengthen EU-Brazil cooperation

Gasification of bagasse, biomass and intermediate energy carriers to advanced biofuels, via FTS (WP3)

The MILENA gasification route

Mass/energy balance

- Overall energy efficiency ~45%, carbon conv.~ 34%
- Wood; 18 MJ/kg, Liquid Product; 43 MJ/kg

Economics

- Production costs; IEA (2019)*: 21-40 €/GJ (0.77-1.47 €/L)
- Shown approach on high end of that range (part of project scope)

Technical feasibility \rightarrow Demonstrate in experiment

* IEA report (2019) Advanced Biofuels – Potential for Cost Reduction

The MILENA gasification route

Objectives:

- Wood + bagasse gasification
- Complete tar removal to DP<10°C
- S/N removal up to <1ppmv
- SMR outlet $H_2/CO = 2$

- SMR >95+% CH₄ conversion
- CO₂ removal to <0.5 vol%
- FT liquid production (40-50% conv.)

Lab setup – commissioned in 2021

Gasification + gas cleaning

The experiment...

- Main feedstock: wood (beech) chips
- Additional feedstock: bagasse pellets

• One day experiments

The team:

- 5 technicians/operators
- 3 analysts
- 2 scientists

Gasification overview

• As desired: very stable gasification conditions

Gasification overview

• Gas compositions relatively stable over the different days

Gas upgrading results

- ✓ Complete sulphur removal
- ✓ Steam reforming to achieve desired H_2 /CO ratio
- \checkmark Complete CO₂ capture from the product gas

SMR results (day 6)

Inlet flow: 600 NL/h, Steam: 710 g/h, P = 5 barg

- Inert TI11 — Cat + inert TI12 — TI13 — TI14 — TI15 -TI16 — TI17 -TI18 — TI19 ті20 — Tset = 875°C all
- About half the reactor length needed to reach equilibrium
- Thermodynamic equilibrium (theoretical) reached in gas outlet

Biofuels synthesis: The FT pilot unit

 $n \text{ CO} + (2n+1) \text{ H}_2 \rightarrow C_n \text{H}_{2n+2} + n \text{ H}_2 \text{O} (\Delta H_r = -165 \text{ kJ/mol}_{CO}).$

- P/T design
- Tube size: 2500 mm (L) x 26
- Heat control:
- Inlet flow, max:

- 100 barg, 350°C 2500 mm (L) x 26 mm (ID) Thermal oil
 - 1640 g/h (gas panel/bio-Syngas)

FT catalyst pellets (cobalt)

SiC pellets

Biofuels synthesis results

Under steady state conditions

- Flow: 600 g/h bio-syngas
- CO Conversion: 34.2 %
- Selectivity C_{5+} : 80.3 (α = 0.85)
- Selectivity CH₄: 10.9
- More than 3.5 L liquid/wax hydrocarbon product.

Conclusions and outlook

Successful technical demonstration of FT biofuel production

Technical successes

- \checkmark Gasification BW and BAG
- ✓ Gas cleaning, tar, S, N to <ppm level
- ✓ Steam reforming to H_2 /CO of 2.0
- ✓ CH_4 conversion at >98%
- \checkmark CO₂ removal to <0.5 vol%
- ✓ FT liquid/wax >3.5 L

<u>Future</u>

- Duration experiments
- Monitor catalyst deactivation
- FTS improve heat management to obtain
 50+% CO conversion
- Detailed economics

Thanks to the team

- Special thanks to Herman, Dennis, Edwin, Marco D, Marco G, Arnold and Tom
- The BCT group

Partners

Thank you for your attention!

www.becoolproject.eu info@becoolproject.eu @projectbecool

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 744821.