

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

Green methanol synthesis for biodiesel production

16-17 th February, Converge Workshop

Objectives: Membrane assisted methanol synthesis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Membrane assisted methanol synthesis.

- Develop stable membranes at reaction conditions
- Develop multi-tube membrane reactor, targeted conversion for feed CO_2/H_2 33% per pass

Tuesday, February 16, 2021

2

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

10

10

Tuesday, February 16, 2021

Membrane development targets:

Membrane development - target

SPEEK

o PI PAN

- Amorphous microporous APTES-PA (<u>Aminopropyl triethoxysilane-Polya</u>mide) BETSE (1, 2-<u>b</u>is (triethoxysilyl) <u>e</u>thane)
 Polymeric SPEEK (sulfonated poly(ether ether ketone)) PI (Poly Imides) PBI (Polybenzimidazol) PDMS (Polydimethylsiloxane)
 - Li-Nafion

Membrane synthesis procedure -support

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Tuesday, February 16, 2021

Results membrane separation tests

CarbON Valorisation in Energy-efficient Green fuels

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Test conditions:

- p_{feed} =35 bar, p_{perm} =1.5 bar, no sweep
- 60% H₂, 10% (50/50)methanol/steam, 20% CO₂, 1% CO, 9% N₂

Nafion, BETSE, PI highest steam and MeOH permeance

- BETSE performance decreases at 275°C, Nafion not selective at T>225°
- H₂O/H₂ selectivity highest for APTES-PA, SPEEK and PI
- MeOH/H₂ selectivity highest for PDMS 1.7, PI and BETSE ~ 0.6-0.8
- Pre-selection:
 1) PI
 2) BETSE
 3) APTES-PA
 PDMS, Nafion → no selectivity > 225 °C
 SPEEK→ low H₂O and MeOH permeance (10X lower than PI)
 PBI → low permeance, low selectivity

Conclusions

- PI membrane preselected as the most promising to reach conversion targets. Membrane performance comparison steam/MEOH/mix (T_{range} =225-250 °C)
 - ΡI BETSE APTES H_2O/H_2 selectivity: 4.7-6.5 3.5-4.3 6-8 ٠ $MEOH/H_2$ selectivity: 0.6-0.7 0.6-0.8 0.2-0.4 ٠ H₂O permeance: PI/2.3 1.6[.]Pl ΡI ٠
 - MeOH permeance: PI 2.2 PI PI/8.4 H₂O>H₂>MEOH>CO₂>CO \approx N₂
- Steam/H₂ behaviour compares well to literature ٠ P 1.00E-05 **△** SPEEK 1.E+05 **△** SPEEK △ APTES-PA [(s.Pa)] △ APTES-PA ∆ PI 1.E+04 $\triangle PI$ 1.00E-06 △ BTESE △ BTESE △ PBI H₂O Permeance [mol/(m 1.E+03 ᢓ △ PBI **△** PDMS Δ ∆ PDMS (²H/O²H) 1.E+01 1.00E-07 ▲ Nation ∆ Nafion Amorphous Al₂O₃/SiO₂ Amorphous Al₂O₂/SiO₂ MOR 1.00E-08 Silicalite Amorphous Al₂O₃ ZSM-5 Amorphous SiO₂ 1.E+00 NaA Amorphous TiO₂ (H-)SOD 1.00E-09 MOR Polymer Nafion 1.E-01 Silicalite ▲ CSP Mor/ZSM-5/CHA ZSM-5 1.E-02 1.00E-10 NaA 250 100 150 200 300 350 400 150 250 300 100 200 350 400 (H-)SOD Temperature [°C] Polymer Nafion Temperature [°C] ▲ CSP

CarbON Valorisation in Energy-efficient Green fuels

Next steps

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Testing rig upgrade at NIC

- Testing of the prominent membranes supplied by TNO.
- Advantages of NIC system:
 - high pressure op.
 (80 bar) and
 - high temperature op. (350°C).

Inside the furnace with the membrane module

- Feed gas saturation with H₂O or MeOH to:
 - determine permeation and
 - simulate thermodynamical equibrium gas mixture.
- He dillution to determine in-situ flow rates of permeate and retentate by gas chromatography.
- CO₂ is pumped into the feed gas using HPLC pump before membrane module.

Modelling procedure

Selected membrane characteristics

- Permeances for all compounds
- T and P dependence
- Determined empirically

Reaction kinetics for the selected catalyst

- Packed-bed reactor kinetic catalytic tests
- Regression of kinetic data using a PBR model (already developed)

Mass transport phenomena

- Convection
- Diffusion
- Permeation through the membrane

Reaction phenomena

- Catalytic surface
 microkinetic reactions
- Adsorption/desorption

Process optimization

Multi-tube system modelling

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Model development

Model development: Kinetics of MeOH synthesis

Overall reaction scheme. Black arrows represent the elementary reaction steps and blue arrows the reaction pathways. Reaction species in black squares without "(g)" are adsorbed on the catalyst's surface.

- Surface reaction mechanism for methanol synthesis on CuZnAl
- Active sites: Cu (&), Zn (*)
- 5 gas phase species, 11 surface species
- 16 reversible surface reactions, 5 of which are adsorption/desorption reactions
- The constants obtained from literature were fitted to experimental data

	optimized				original Zn/Cu(211)			
Reaction	Afor [s-1]	Eafor [kJ/mol]	Aback [s-1]	Eaback [kJ/mol]	Afor [s-1]	Eafor [kJ/mol]	Aback [s-1]	Eaback [kJ/mol]
H2 + & + & ≓ H& + H&	1.00E+03	51.00	1.77E+12	78.00	1.00E+03	51.00	1.77E+12	78.00
H& + CO2* ⇔ HOCO*&	4.62E+13	83.80	8.23E+13	104.28	3.91E+12	95.53	1.00E+11	123.51
H& + H2CO*& ⇔ H3CO*& + &	3.12E+08	8.47	1.17E+11	88.29	4.66E+12	11.58	1.00E+11	114.82
H& + H3CO*& ⇒ CH3OH*& + &	3.28E+12	112.01	6.98E+12	87.02	1.99E+14	143.77	1.44E+13	116.75
H& + CO2* ⇔ HCOO*&	1.69E+11	58.96	5.97E+14	142.86	3.57E+12	74.30	1.00E+11	188.16
H& + HCOO*& ⇔ HCOOH*& + &	4.69E+09	60.20	2.71E+10	75.73	7.93E+12	114.82	1.77E+11	48.25
H& + HCOOH*& ⇒ H2COOH*& + &	1.13E+12	87.74	6.71E+13	75.98	1.26E+12	58.86	9.57E+13	58.86
H2COOH*& + * ⇔ H2CO*& + OH*	1.82E+13	59.21	4.26E+11	17.08	2.53E+13	50.17	1.86E+11	16.40
H& + OH* ⇔ H2O*+ &	6.43E+09	72.66	2.89E+10	72.73	1.22E+13	77.19	4.83E+11	70.44
CO2* + & ⇒ CO& + O*	3.98E+12	46.16	1.57E+12	52.88	1.04E+13	76.23	8.40E+12	65.61
H& + O* ⇔ OH*+&	5.90E+12	309.13	5.05E+10	226.11	1.88E+13	116.75	1.00E+11	198.77
HOCO*& ⇔ CO& + OH*	3.16E+10	27.99	4.89E+11	65.23	6.60E+13	22.19	1.00E+11	58.86
CO2 + * ⇒ CO2*	7.53E+02	-2.29	2.9E+09	-29.13	7.41E+02	-2.01	1.00E+13	-30.88
CH3OH + * + & ⇒ CH3OH*&	2.59E+01	-0.99	1.34E+13	43.01	8.68E+02	-2.01	1.00E+13	39.56
H2O + * ⇔ H2O*	8.38E+02	-1.69	1.31E+12	39.45	1.16E+03	-2.01	1.00E+13	37.63
CO + & ⇒ CO&	2.86E+02	-0.98	3.25E+13	59.12	9.28E+02	-2.01	1.00E+13	98.42

Reactions and reaction rate constants (original from literature and fitted to experimental data)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818135

Model development

• Modeling in the programme CERRES developed at NIC

- Simulation of 14 different types of chemical reactors (including membrane reactor)
- Complex user-defined chemical kinetics
- Model-experiment compare
- Parameter optimization
- Sensitivity analysis
- Efficient computation
- Plot results and export data
- Easy to use (graphical user interface)
- Free for academic/teaching use

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135

CONVERGE: CarbON Valorisation in Energy-efficient Green fuels

WP4: Green methanol synthesis for biodiesel production