

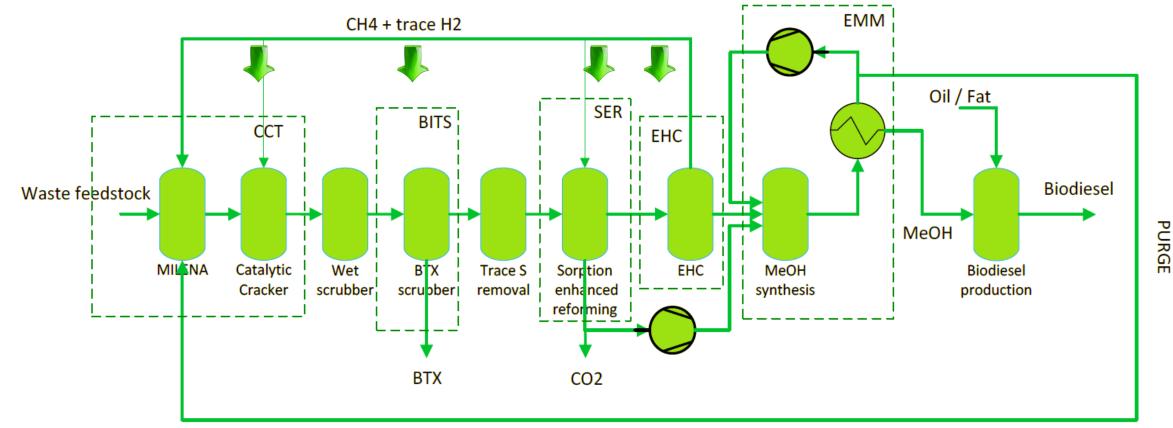
CONVERGE technology for efficient methanol production: Energy and Environmental A analysis

Petrescu Letitia

•••• International workshop on CO2 capture and utilization/Eindhoven/16-17 February 2021

Objectives

» Green methanol for biofuel production using waste feedstock as raw-material



- » The waste feedstock (from 4 different regions) will be characterized and used in process modeling and simulation tasks; its supply chain will represent important data for LCA
- » The optimum economic layout will be identified for CONVERGE technology
- » LCA will compare the environmental impacts of CONVERGE to other green methanol production processes
- » Evaluation of social impact

CONVERGE concept

» Combines five innovative processes

Figure 1. CONVERGE process flowsheet

CONVERGE main units

ССТ	BITS	SER	EHC	EMM
 Catalytic cracking of tars from an indirectly heated gasifier to below green C8 	 Recovery of refinery products including aromatics for green C6- C8 fraction (BTX) 	 » Sorption-Enhanced Reforming of C1-C6 for excess-carbon removal, and H2 production 	 » Highly efficient electrochemical compression of green H2 with by-product fuel 	 Enhanced Methanol Membrane to ensure efficient green biodiesel production
» Advantage:	» Advantage:	» Advantage:	» Advantage:	» Advantage:
 Removes the separation of high molecular weight tars from downstream processes, also allowing other by-product fuels, i.e. CH4 and methanol purge to fire the gasification and SER units 	 Avoid the need to pressurize all the producer gas to perform hydrodesulphurization (HDS), and create an extra revenue stream that will also receive positive price pressure in a future carbon-constrained world 	production	 Elimination of mechanical compression costs for H2 compression. In combination with SER and EMM compression costs are driven to an absolute minimum 	 Due to in situ separation of inhibition products the catalyst for methanol production operates more efficiently as the composition remains further away from equilibrium

CONVERGE - Advantages

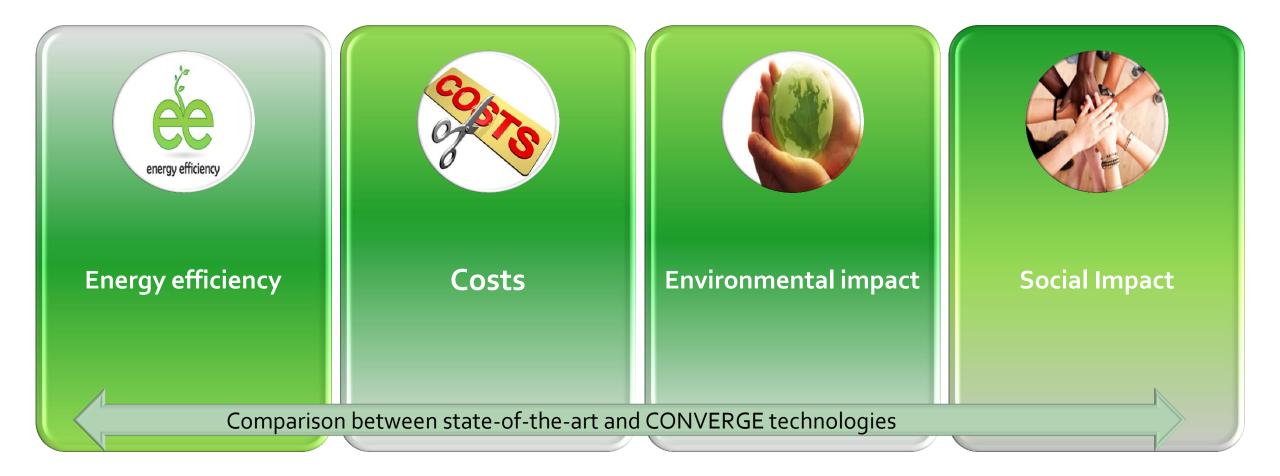
Technical

- » ≥30% of energy losses related to biodiesel production \rightarrow 712% in » 10% \searrow of OPEX; production;
- » Syngas treatment: 75% in C/H₂ purity \rightarrow 717% overall carbon usage;
- » SER: reduce the H₂ production and CO₂ separation from 2 MJ/kgCO₂ down to 1.2 MJ/kgCO₂;
- » EHC: reduce the purification and compression work from 16 MJ/kgH2 down to 12 MJ/kgH2;
- » Enhanced Membrane Methanol synthesis: single pass conversion >33% \rightarrow size reduction of the methanol reactor;

Economic

» 15% \searrow of CAPEX for the overall process;

Environmental


- » Reduction of CO₂ emissions by 0.2 kgCO₂/kgMeOH as consequence of higher production efficiency;
- » Reduce the biomass transportation costs as consequence of the process flexibility and supply chain evaluations for 4 distinct geographical regions;

WP objectives	• Definition of the Base Case (BC) and CONVERGE Case
Steps to reach the objectives	 Identification of possible raw-materials for BC and CONVERGE Case Identification of the main blocks for BC and CONVERGE Case Identification of the best operating conditions of various sub-units Construction of BC and CONVERGE Case process flow-diagram
Tools to reach the objective	 Process flow-modelling tools (i.e. Aspen Plus) Validation of the models Discussions, side-meetings, e-mails, skype calls
Results obtained	 Detailed mass & heat balances for BC and and CONVERGE Case Technical KPIs (e.g. cold gas efficiency) Plants economics (e.g. levelized cost of fuel)

WP 5 Objectives

Technical analysis

Base case

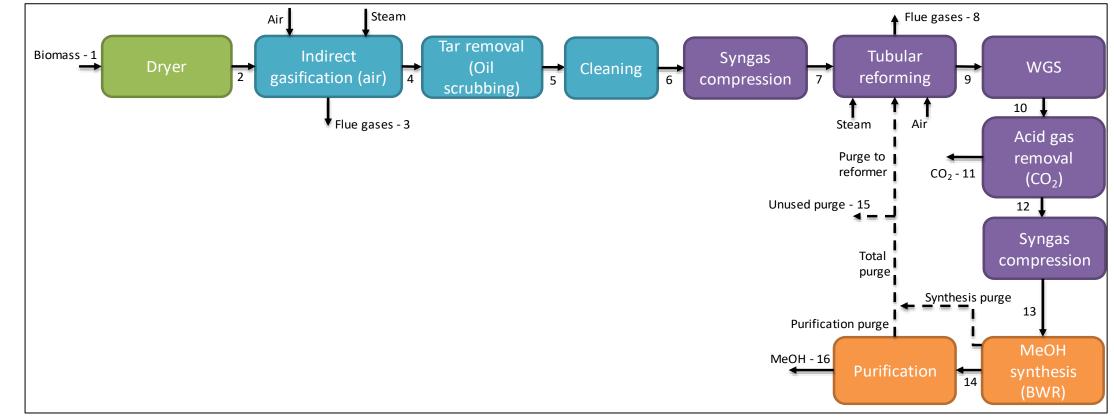
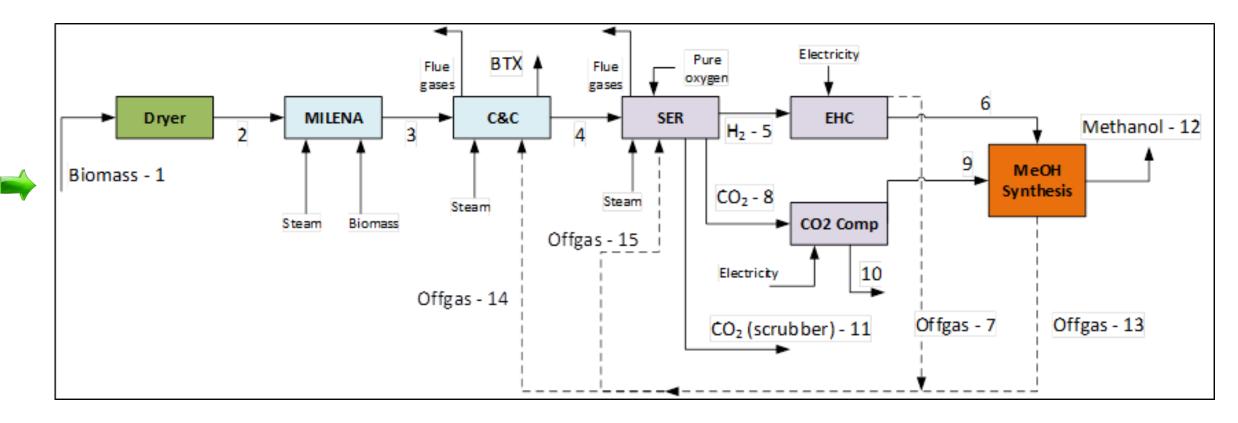



Figure 2. Simplified process flow-sheet of the Base Case

Technical analysis – Case studies

CONVERGE Case

Figure 3. Simplified process flow-sheet of the CONVERGE Case

○ ○ ○ International workshop on CO2 capture and utilization/Eindhoven/16-17 February 2021

Technical analysis

Table 1. Case studies comparison

PROCESS	BASE CASE (BC)	CONVERGE CASE
Biomass drying	Tube bundle drier	Tube bundle drier
Biomass conversion	Indirect gasification (MILENA)	Indirect gasification (MILENA)
(Syngas production)	Atmospheric pressure	Atmospheric pressure
	Air and steam	Air and steam
Tar removal	Oil scrubbing (OLGA)	Catalytic Cracking
	Water scrubbing	Water scrubbing
	Compression up to 22 bar	-
Syngas cleaning and	Tubular reforming	-
conditioning	WGS bypassed	-
	Acid gas removal - MDEA	$SER+CO_2$ compression (up to 80 bar)
	Compression up to 72 bar	ECC (compression up to 80 bar)
Methanol synthesis	Boiling water reactor	Membrane reactor
Methanol purification	Stripping of light gasses and	Stripping of light gasses and water
	water separation	separation

Technical analysis

Table 2. Examples of possible biomass

	Forest residues	Cereal straw	Residual lignin
С	50.71	48.12	57.80
Н	6.08	6.57	6.20
0	42.84	48.18	33.83
Ν	0.38	0.45	0.80
S	0.06	0.07	0.13
Cl	0.09	0.30	0.00
Fixed C	17.93	21.02	27.80
Volatile matter	82.07	78.98	72.20
Ash	1.00	6.70	0.10
Moisture	35.00	7.80	52.00
LHV [MJ/kg]	11.55	15.37	11.01

Table 3. Global plant performance

CGE section		Base Case	CONVERGE	CONVERGE Optimized
Global (methanol)		58.59%	42.55%	49.43%
Global (methanol +B	TX)	-	51.45%	58.75%
MILENA	Gasifier	82.73%	84.41%	84.43%
Cleaning		99.79%	97.89%	94.96%
Reformer	SER	104.79%	88.34%	94.27%
WGS+CO2 separation		99.98%	-	-
Methanol synthesis		68.36%	82.64%	81.72%
Methanol purification		97.84%		

Technical and economic analysis for BC

Table 4. Case studies comparison

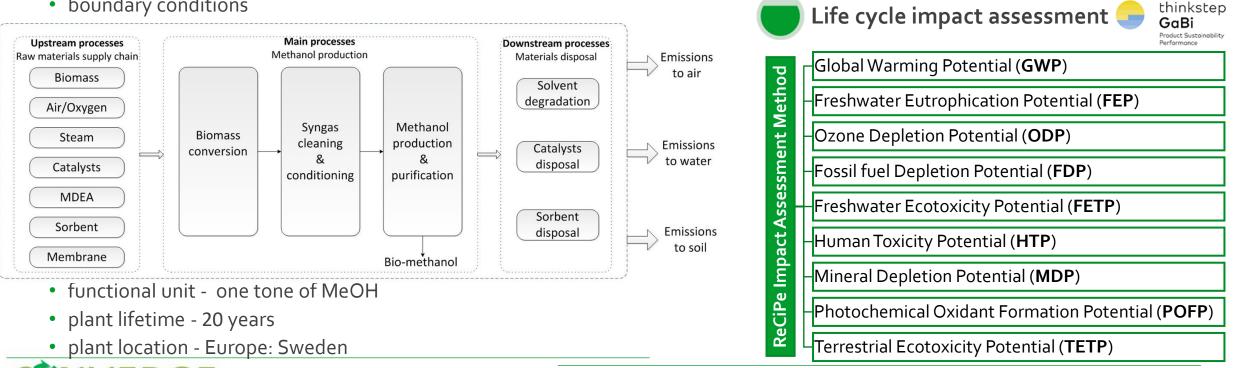
on in Energy-efficient Green

Technical KPI	BASE CASE (BC)			
Plant capacity		10 MW _{LHV}	100 MW _{LHV}	300 MW _{LHV}
MeOH production	ton/d	25.1	251	753
CO ₂ separated	ton/d	27.7	277	831
CGE global	%	58.6		
Costs	BASE CASE (BC)			
Total Capital Investment	M€	39.1	206	424
	M€/y	7.09	43.8	101.6
Total yearly cost	€/ton	1010	525	406
	€/MWh	183	95	73

○ ○ ○ International workshop on CO2 capture and utilization/ Eindhoven/ 16-17 February 2021

Environmental analysis

» Life Cycle Assessment Steps


Environmental analysis

Goal and scope definition

» Goal: Evaluate and compare the environmental burden of biomethanol production proposed in the CONVERGE technology with other technologies for bio-methanol production.

» Scope:

boundary conditions

Life cycle inventory

» Quantification of inputs and

throughout its life cycle

outputs for a product/process

Energy

Raw materials

Air emissions

Soil emissions

Water emissions

Environmental analysis

Interpretation

Table 5. LCA Results

KPI	Units	Base Case	CONVERGE
GWP	kg CO2 eq./ tMeOH	1305.4	1470.47
ODP*10 ⁹	kg CFC-11 eq./ tMeOH	5.85	4.89
FDP	kg oil eq./ tMeOH	6.15	8.35
FETP	kg 1,4-DB eq./ tMeOH	0.51	0.19
НТР	kg 1,4-DB eq./ tMeOH	36.69	7.06
MDP	kg Fe eq./ tMeOH	2.51	2.81
POFP	kg NMVOC/ tMeOH	0.15	0.149
TETP *10 ³	kg 1,4-DB eq./ tMeOH	9.18	4.61

 \odot \odot \odot International workshop on CO2 capture and utilization/Eindhoven/16-17 February 2021

Concluding remarks

- » Different types of biomass are/will be considered in the CONVERGE project for biomass transformation into bio-methanol
- » The attention was focused on forest residues biomass
- » Cereal straw and residual lignin will be considered in future evaluations
- » Calculation of technical KPIs for CONVERGE concept have been performed
- » Economic analysis is an on-going task
- » Environmental impact was evaluated for the main process (base case and CONVERGE concept) but upstream and downstream processes should be included in the analysis (on-going task)

Thank you for your attention!

Acknowledgements

The CONVERGE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 818135